Securing industrial communication with software-defined networking

Abhishek Savaliya, Rutvij H. Jhaveri, Qin Xin, Saad Alqithami, Sagar Ramani , Tariq Ahamed Ahanger

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
8 Downloads (Pure)

Abstract

Industrial Cyber-Physical Systems (CPSs) require flexible and tolerant communication networks to overcome commonly occurring security problems and denial-of-service such as links failure and networks congestion that might be due to direct or indirect network attacks. In this work, we take advantage of Software-defined networking (SDN) as an important networking paradigm that provide real-time fault resilience since it is capable of global network visibility and programmability. We consider OpenFlow as an SDN protocol that enables interaction between the SDN controller and forwarding plane of network devices. We employ multiple machine learning algorithms to enhance the decision making in the SDN controller. Integrating machine learning with network resilience solutions can effectively address the challenge of predicting and classifying network traffic and thus, providing real-time network resilience and higher security level. The aim is to address network resilience by proposing an intelligent recommender system that recommends paths in real-time based on predicting link failures and network congestions. We use statistical data of the network such as link propagation delay, the number of packets/bytes received and transmitted by each OpenFlow switch on a specific port. Different state-of-art machine learning models has been implemented such as logistic regression, K-nearest neighbors, support vector machine, and decision tree to train these models in normal state, links failure and congestion conditions. The models are evaluated on the Mininet emulation testbed and provide accuracies ranging from around 91–99% on the test data. The machine learning model with the highest accuracy is utilized in the intelligent recommender system of the SDN controller which helps in selecting resilient paths to achieve a better security and quality-of-service in the network. This real-time recommender system helps the controller to take reactive measures to improve network resilience and security by avoiding faulty paths during path discovery and establishment.
Original languageEnglish
Pages (from-to)8298-8313
Number of pages16
JournalMathematical Biosciences and Engineering
Volume18
Issue number6
DOIs
Publication statusPublished - 22 Sep 2021

Keywords

  • industrial cyber-physical systems
  • machine learning
  • software-defined networking
  • network security

Fingerprint

Dive into the research topics of 'Securing industrial communication with software-defined networking'. Together they form a unique fingerprint.

Cite this