Concatenation-Based Greedy Heuristic for the Euclidean Steiner Tree Problem

Martin Zachariasen, Pawel Winter

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


We present a class of O(n log n) heuristics for the Steiner tree problem in the Euclidean plane. These heuristics identify a small number of subsets with few, geometrically close, terminals using minimum spanning trees and other well-known structures from computational geometry: Delaunay triangulations, Gabriel graphs, relative neighborhood graphs, and higher-order Voronoi diagrams. Full Steiner trees of all these subsets are sorted according to some appropriately chosen measure of quality. A tree spanning all terminals is constructed using greedy concatenation. New heuristics are compared with each other and with heuristics from the literature by performing extensive computational experiments on both randomly generated and library problem instances.
Original languageEnglish
Pages (from-to)418-437
Number of pages20
Publication statusPublished - 1999


Dive into the research topics of 'Concatenation-Based Greedy Heuristic for the Euclidean Steiner Tree Problem'. Together they form a unique fingerprint.

Cite this